
- 1 - 

S.Y. B.Sc. (IT) : Sem. III 
Data Structures  

Time : 2½ Hrs.] Prelim Question Paper Solution [Marks : 75 
 

 

Q.1Attempt the following (any THREE) [15]
Q.1(a) What is an algorithm? Write down characteristics of algorithm. [5]
Ans.: An algorithm can be defined as finite collection of well-defined steps designed to solve a 

particular problem. An algorithm must have the following characteristics: 
Input: An algorithm must take some inputs hat are required for the solution of a problem.  
Process: An algorithm must perform certain operations on the input data which are 
necessary for the solution of a problem.  
Output : An algorithm should produce certain output after processing the inputs. 
Finiteness: An algorithm must terminate after executing certain finite number of steps. 
Effectiveness: Every step of an algorithm should play a role in the solution to the problem. 
Each step must be unambiguous, feasible and definite. / 
 

Q.1 (b) What are the advantages and limitations of an array? [5]
Ans.: Advantages of Array  
  Array is the simple kind of data structure which is very easy to  implement. 
  Address of any element of the array can be calculated easily as elements are stored in 

contiguous memory locations.  
 Array can be used to implement other data structures such as stack, queue, trees and 

graph. 
 If elements of an array are stored in some logical order then binary  search can be 

applied to search an element in the array efficiently. 
 

 Limitations of An Array 
  Array is the static kind of  data structure. Memory used by the array cannot be 

increased or decreased whether it is allocated at runtime or  compile time. 
 Only homogenous elements can be stored in the array. Therefore in case  we want to 

store the data of mixed type the array cannot be used. 
 Insertion and deletion of elements are very time consuming in array. When new element 

is to be inserted in the middle of the array then elements are required to move to 
create the space for new element. If an element is to be deleted from the array, all its 
preceding elements need to be moved to fill the vacated position of the array. 

 
Q.1(c) What is data structure? Explain different categories/classification of data 

structure. 
[5]

Ans.: A data structure is a way of storing the data in computer's memory so that it can be used 
efficiently. A data structure is a logical/ mathematical model of organization of data. The 
choice of data structure begins with the choice of an Abstract Data Type (ADT) such as 
array. The different categories of data structure are  
Linear Data Structure: The elements in a linear data structure form a linear sequence. 
Example of linear data structures are: Array, Linked list, Queue, Stack etc. 
Non-Linear Data Structure: The elements in a non-linear data structure do not form any 
linear sequence. Example Three and Graph.  
Static Data Structure: Static data structures are those whose memory occupation is 
fixed. The memory taken by these data structures cannot be increased or decreased at run 
time. Example of the static data structure is an array. The size of an array is declared at 
the compile time and this size cannot be changes during the run time. 
Dynamic Data Structure: Dynamic data structure are those whose memory occupation is 
not fixed. The memory taken by these data structures can be increased or decreased at run 



Vidyalankar : S.Y. B.Sc. (IT)  DS 

- 2 - 

time. Example of the dynamic data structure is linked List. The size of the linked list can be 
changed during the run time. 
Other data structures like stack, queue, tree, and graph can be static or dynamic depending 
on, whether these are implemented using an array or a linked list. 
Homogeneous Data Structure: Homogenous data structures are those in which data of 
same type can be stored. Example is array.  
Non-Homogeneous Data Structure: Non-Homogenous data structures are those in which 
data of different type can be stored. Example is linked list. 
 

Q.1(d) Consider a two dimensional array D [5:7, 3:6]. If the base address of D is 
1536 and each element takes 2 memory cells then find the address of D6, 0 
element assuming that 
(i) Array D is stored in column major order 
(ii) Array D is stored in row major order

[5]

Ans.: Lower index of 1st dimension (br) = 3  
 Upper index of 1st dimension (ubr) = 7  
 Lower index of 2nd dimension (bc) = 2  
 Upper index of 2nd dimension (ubc) = 6 
 
 Length of the 1st dimension (No. of Rows) 
  r = ubr  br + 1  = 7  3 + 1  = 5 
 Length of the 2nd dimension (No. of columns) 
  c = ubc  bc + 1  = 6  (2) + 1 = 9 
 
 Row Major Order : 
 Adjusted D[4] [0] = Base (D) + W[c(1  br] + [j  bc] 
      = 5639 + 2 * [9(4  3) + (0  (2))] 
      = 5639 + 2 * [9(1) +  (2)] 
      = 5639 + 2 * [11]    = 5661 
 
 Column Major order : 
 Address of d[4] [0] = Base (D) + W[(i(1  br) + r (j  bc)] 
       = 5639 + 2 * [(4  3) + 5 * (0  (2))] 
       = 5639 + 2 * [ 1 + 10] 
       = 5639 + 22   = 5661 
Q.1(e) Differentiate between linear search and binary search. [5]
Ans.:  

 Linear Search Binary Search 
1. Elements of an array need not be in an 

sorted order 
Elements of an array must be in any 
sorted order. 

2. Complexity of linear search is 0(n) Complexity of binary search is 0(log2n) 
3. Linear search is accomplished by 

comparing desired element with each 
element of the array starting from 1st 
element of the array 

In Binary search the desired element is 
compared with the middle element and 
selecting the half portion of the list in 
which element may be present. This 
procedure of having the list is repeated 
till the element is found or we conclude 
that element is not present.  

4. Can be applied an linear as well as 
nonlinear data 

Can be applied only on linear data 

 
 



Prelim Question Paper Solution 

- 3 - 

Q.1(f) Sort the following given elements using Bubble sort. 30, 20, 50, 40, 10, 70, 60, 
80 

[5]

Ans.:  
  

0 1 2 3 4 5 6 7 
30 20 50 40 10 70 60 80 

 
 Bubble Sort 
 Pass 1 : Number of steps = n – 1 = 8 – 1 = 7 
   
 
 
     S[1] > S[2] No 
 
 
 
 
 
 
     S[4] > S[5] No 
 
 
 
     S[6] > S[7] No 
  Largest element 80 is at S[7] 
  
 Pass 2 : Number of step S = n – 2 = 8 – 2 = 6 
    S[0] > S[1] No 
    S[1] > S[2] No 
 
  
 
     S[3] > S[4] No 
     S[4] > S[5] No 
     S[5] > S[6] No  
 2nd largest element 70 is at S[6] 
 
 Pass 3 : Number of steps = n – 3 = 8 – 3 = 5 
     S[0] > S[1] No 
 
 
 
     S[2] > S[3] No 
     S[3] > S[4] No 
     S[4] > S[5] No 
 3rd largest element 60 is at S[5] 
 
 Pass 4 : Number steps = n – 4 = 8 – 4 = 4 
 
 
 
    S[1] > S[2] No 
    S[2] > S[3] No 
    S[3] > S[4] No 

 0 1 2 3 4 5 6 7 
S[0] > S[1] Yes 20 30 50 40 10 70 60 80 

 0 1 2 3 4 5 6 7 
S[2] > S[3] Yes 20 30 40 50 10 70 60 80 

 0 1 2 3 4 5 6 7 
S[3] > S[4] Yes 20 30 40 10 50 70 60 80 

 0 1 2 3 4 5 6 7 
S[5] > S[6] Yes 20 30 40 10 50 60 70 80 

 0 1 2 3 4 5 6 7 
S[2] > S[3] Yes 20 30 10 40 50 60 70 80 

 0 1 2 3 4 5 6 7 
S[1] > S[2] Yes 20 10 30 40 50 60 70 80 

 0 1 2 3 4 5 6 7 
S[0] > S[1] Yes 10 20 30 40 50 60 70 80 

Number of passes = n – 1
           = 8 – 1

= 7



Vidyalankar : S.Y. B.Sc. (IT)  DS 

- 4 - 

 Pass 5 : Number of steps = n – 5 = 8 – 5 = 3 
  S[0] > S[1] No 
  S[1] > S[2] No 
  S[2] > S[3] No 
 
 Pass 6: No. of steps = n – 6 = 8 - 6 = 2 
  S[0] > S[1] No 
  S[1] > S[2] No 
 
 Pass 7 : Number of steps = n – 7 = 8 – 7 = 1 
  S[0] > S[1] No 
 
  

 
Q.2Attempt the following (any THREE) [15]
Q.2(a) What is header linked list? Explain different categories of header linked list.  [5]
Ans.: A header linked list is a special kind of linked list which contains a special node at the 

beginning of the list. This special node is known as head node.  
  The head node contains information regarding the linked list. 
  This information may be total number of nodes in the linked list, some description for 

the user like creation date, modification date, whether the data in the list is sorted or 
unsorted.  

 
 
 
  Grounded Header Linked List : It is list in which last mode of the list contains the Null 

in its Next pointer field. If grounded header linked list is empty then the Null value will 
be stored in the Next pointer field of the head node.  

  Circular Header Linked List : It is a list in which the last node of the list points  back 
to the header node that is Next Pointer field of the last bode contains the address of 
the header node. If circular header linked list is empty then address of the head node 
is stored in the Next pointer field of the head node itself.  

  Two way Header Linked List : It is a list in which the Pre Part of the header node 
contains the address of the first node and the Next part contains the address of the 
last node.  

  Two way Circular Header Linked List : It is the list in which the Pre part of the 
header node contains the address of the first node and the Pre part of the first node 
contains the address of the header node. The Next part of the header node contains 
the address of the last node and the Next part of the last node contains the address of 
the header node. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 0 1 2 3 4 5 6 7 
S[1] > S[2] Yes 10 20 30 40 50 60 70 80 

Begin 
    5   10   12 Null

Null An Empty Grounded Header List Linked 

Begin 

Begin 

52 62 72 40 Null 
A Header Linked List 

Header Node 

Header Node 

75 Null 

Two way Header Linked List

Null 77 31 19

Begin 



Prelim Question Paper Solution 

- 5 - 

Q.2 (b) What is linked list? Write an algorithm to insert an element in the end of linked
list. 

[5]

Ans.: Linked list is the most commonly used data structure used to store similar type of data in 
memory. The elements of a linked list are not stored in adjacent memory locations as in arrays. 

 
 It is a linear collection of data elements, called nodes, where the linear order is 

implemented by means of pointers. A linked list allocates memory for storing list elements 
and connects elements together using pointers.  

  
 Algorithm to insert an element in end of linked list 
 /* Function to insert a node at the end of a linked list */ 
 void creat (struct node **q. int no) 
 {  
   struct node *temp. *r : 
 
   if(*q == NULL)/* If the list is empty. create first node */ 
   {  
    temp = malloc(sizeof(struct node)): 
    temp > data = no: 
    temp > next = NULL : 
    *q = temp : 
   } 
   else  
   { 
    temp = *q : 
    /* go to last node */ 
    while(temp > next : = NULL) 
     temp = temp > next : 
 
    /* Add node at the end */ 
    r = malloc(sizeof(struct node)) : 
    r > data = no : 
    r > next = NULL : 
    temp > next = r : 
   } 
 } 
 
Q.2(c) What is circular linked list> How to traverse circular linked list? [5]
Ans.: A circular linked list is a list in which last node points back to the first node instead of 

containing the Null pointer in the next part of the last node. 

 
 

A Circular Linked List 
  All the operations which can be performed on ordinary singular linked list can easily be 

performed on circular linked list with the following changes 
  In case of 1-way singular linked list the next part of the last node will contain Null 

address but in case of circular linked list the next part of the last node consist of 
address of the first node i.e. Begin. Thus for reaching at the end of the circular linked 
list we will compare the address of the first node i.e. Begin with the address stored in 
Next part of each node. If both the addresses come out to be same then we have 
reached at the end of the circular list 



Vidyalankar : S.Y. B.Sc. (IT)  DS 

- 6 - 

  When a new node is to be inserted at the end of the circular linked list its Next part 
will contain the address of the first node instead of Null as in the case of singular 
linked list 

Algorithm To Traverse A Circular Linked List 
Step 1: If Begin = Null then 

Print: "Circular Linked List is empty" 
Exit 

 
Q.2 (d) What is the need of two way linked list? Write an algorithm to traverse a two

linked from end to beginning. 
[5]

Ans.: In a 1-way linked list we traverse the list only in one direction i.e. from beginning to end  
But in certain applications it is required to traverse the list in both directions i.e. in forward 
direction (from beginning to end) and in backward direction (from end to beginning). This 
can be accomplished with the help of two-way linked list or doubly linked list. In two-way 
linked list each node is divided into three parts Pre, Info, Next 
 
  Prev contains the address of the preceding node 
  Next contains the address of the next node 

Tre   Info  Next 
Structure of a Node used in a Two-way Linked List 
 

In 2-way linked list two list pointers are used Begin and End which contains the address of 
the first and the last node respectively. The Pre part of the first node of a 2-way linked 
list will contain Null as there is no node preceding the first node and the Next part of the 
last node of a 2-way linked list will contain Null as there is no node following the last node. 
 

Q.2 (e) Explain Reversing a Linked List. [5]
Ans.: The reversing of the list means that last node becomes the first node and first becomes 

the last. 
  void reverse (struct node **x) 
  {  
   struct node *q. *r. *s : 
    
   q = *x : 
   r = NULL : 
   /* Traverse the entire linked list */ 
   while(q != NULL) 
   { 
    s = r : 
    r = q : 
    q = q > next : 
    r > next = s : 
   } 
   *x = r : 
 } 
 The function reverse () receives the parameter struct node **x, which is the address of the 

pointer of the first node in the linked list. To traverse the linked list, a variable of type 
struct node * is required, q has been initialized the value of x, so q starts pointing to the 
first node. 

 

 The NULL value is stored in the link part of the first node, i.e. 
  s = r; 
  r = q; 
  r  next = s; 



Prelim Question Paper Solution 

- 7 - 

 r which is of type struct node * is initialized to a NULL value. Since r contains NULL, s 
would also contain NULL. Now r is assigned to q so that r also starts pointing to the first 
node. Finally, r  next is assigned to s so that r  next becomes NULL which is nothing but 
the next part of the first node. Before storing a NULL value in the next part of the first 
node, q is made to point to the second node through  

  q = q  next: 
 When there is second iteration of while loop, r points to the first node and q points to the 

second node. Now the next part of the second node should point to first node. q is made to 
point to the second node.  

  q = q  next: 
 
 During the second interation of while loop, r points to the first node and q points to the 

second node. Now the next part of the second node should point to first node which is done 
by : 

  s = r; 
  r = q; 
  r  next = s: 
 
 Since r points to the first node, s would also point to the first node. Now r is assigned the 

value of q so that r now points to the second node. Finally, r  next is assigned to s so that 
r  next starts pointing to the first node. But if we store the value of s in the second node 
then the address of third node would be lost. Hence, before storing the value of s in r  
next, q is made to point to the third node by :  

  q = q  next: 
 
 While traversing the nodes through the while loop, q starts pointing to the next node in the 

list and r starts pointing to the previous node. By the end of while loop the first node 
becomes the last node and the last node becomes the first node.  

 
 When *x=r is executed, it ensures that pointer p now starts pointing to the node which is 

the last node in the original list. 
 
  
 
 
 
 
 

  Now, r=q, i.e. r also starts pointing to the first node (Fig.) q points to the second node as q = 
q  next. 

 
  
 
  
 
 r points to the first node and s also points to the first node as s = r (Fig.). Now, r is 

assigned the value of q, therefore, r now points to the second node (Fig.). From the above 
assignment as s was pointing to the first node so, r  next = s. 

 
  
 
 The r  next starts pointing to the first node (Fig.) 
  
 

Fig.: Initial 

Fig. 

Fig. 



Vidyalankar : S.Y. B.Sc. (IT)  DS 

- 8 - 

 
 
  
 
 
 
  
 
 
 
 
 
 
 
Q.2(f) Explain how memory is allocated and deallocated for linked list. [5]
Ans.: To insert an element in a linked list the first requirement is to get a free Node.   
  To delete a node from a linked list it is desirable to return the memory taken by deleted 

Node for its reusability.  
  The task of obtaining an empty Node for insertion and returning free Node after 

deletion is accomplished by maintaining a separate list of free Nodes that begin with 
pointer free which points to first available free Node.  

  Whenever a new Node is to be inserted into the linked list then free memory is checked 
for the availability. If the Node is available then the Node is added to the linked list 
and pointer Free will point to next available Node.  

  If there is no free node then it is indicated by Free = Null and this condition is known as 
overflow.  

  Whenever a node is deleted from the linked list it is inserted as the first node of the 
free storage. The pointer Free will point to the recently added node.  

  The operation of getting a free node from and returning the node to the free storage 
list is shown below : 

 
 
 
 
 
  Removed of a Node from the free  storage  List (Allocation) 
 
 
 
 
 
  Insertion of a Node into the Free Storage list (Deallocation) 
 
Q.3Attempt the following (any THREE) [15]
Q.3(a) Define stack. Write algorithms to perform push and pop operations on stack with 

array representation. 
[5]

Ans.: Stack is one of the most commonly used linear data structures of variable size. In the linear 
data structure i.e. array, the insertion and deletion of an element can take place at any position 
of the array but in the case of stack, the insertion and deletion of an element can occur at only 
one end known as Top. In stack, insertion operation is known as push and deletion operation is 
known as pop. Stack is also called Last In First Out (LIFO) list. It means that the last item 
added to the stack will be the first item to be removed from the stack. Consider an example of 
stack of dish plates in which clean plates are added to the top of the stack. Also, plates are 

free 

New 
         Null 

New = Free
Free = Free  Next 

free 

Pointer 

         Null 

Pointer  Next  Fee 
Free = Pointer  

  

Fig.: Final Reversed List 



Prelim Question Paper Solution 

- 9 - 

removed from the top of the stack. The first plate put on the stack is the last plate to be 
removed from the stack, as shown in the figure below: 

 
 Following algorithms explain the push and pop operation on the stack when it is represented 

using an array: 
 Algorithm : Push Operation − Insert a new element ‘Data’ at the top of the stack 

represented by an array ‘S’ of size ‘Max’ with a stack index variable ’Top’ pointing to 
the topmost element of the stack. 

 Step 1  : If Top = Max Then 
    Print : “Stack is already full, Overflow Condition” 
    Exit 
   [End If] 
 Step 2 : SetTop = Top + 1 
 Step 3  : Set S[Top] = Data 
 Step 4 : Exit 
  
 Algorithm : Pop Operation − Delete an element from the stack represented by an array 

‘S’ and returns the element ‘Data’ which is at the top of the stack. 
 Step 1 : If Top = NULL Then 
    Print: “Stack is already empty, Underflow Condition” 
    Exit 
   [End If] 
 Step 2 : Set Data = S[Top] 
 Step 3 : Set Top = Top − 1 
 Step 4 : Exit 
  
Q.3 (b) Explain with example priority queue. [5]
Ans.: Priority Queues: A queue in which we are able to insert items or remove items from any 

position based on some property (such as priority of the task to be processed) is often 
referred to as a priority queue. Figure (a) represents a priority queue of jobs waiting to use 
a computer. Priorities of 1, 2 and 3 have been attached to jobs of type real-time, on-line, 
and batch, respectively. Therefore, if a job is initiated with priority i, it is inserted 
immediately at the end of the list of other jobs with priority i, for i = 1, 2 or 3. In this 
example, jobs are always removed from the front of the queue. (In general, this is not a 
necessary restriction on a priority queue.) 
 
A priority queue can be conceptualized as a series of queue representing situations in which 
it is known a priori what priorities are associated with queue items. Figure (b) shows how the 
single-priority queue can be visualized as three separate queue, each exhibiting a strictly 
FIFO behavior. Elements in the second queue are removed only when the first queue is 
empty, and elements from the third queue are removed only when the first and second 
queues are empty. This separation of a single-priority queue into a series of queues also 
suggests an efficient storage representation of a priority queue. When elements are 
inserted, they are always added at the end of one of the queues as determined by the 



Vidyalankar : S.Y. B.Sc. (IT)  DS 

- 10 - 

priority. Alternatively, if a single sequential storage structure is used for the priority 
queue, then insertion may mean that the new element must be placed in the middle of the 
structure.   
 
Task identification  

 

R1 R2 … Ri-1 O1 O2 … Oi1 B1 B2 … Bk1 … 
1 1 … 1 2 2 … 2 3 4 … 3 … 

Priority  ↑   ↑   ↑ 
   Ri   Rj   Rk 

(a) : A priority queue viewed as a single queue 
with insertion allowed at any position. 

 

Priority 1 
R1 R2 … Ri1 … ← Ri

Priority 2 
O1 O2 … Oi1 … ← Oj

Priority 3 
B1 B2 … Bk1 … ← Bk 

(b) : A priority queue viewed as a setoff queue. 
 
Q.3(c) Write an algorithm to insert and delete node from a circular queue. [5]
Ans.: Circular Queue is a linear data structure in which the operations are performed based on 

FIFO (First In First Out) principle and the last position is connected back to the first 
position to make a circle. It is also called as “Ring Buffer” 

 Algorithm: Insert a new element ‘Data’ into a queue. 
 Algorithm: Delete an element from the queue 
 Step 1: If Front = Null Then 
   Print: “Queue is Empty, Underflow 
  Condition “Exit (End if] 
 Step 2: Set Data = Q[Front] 
 Step 3: If Front = Rear Then 
   Set Front = Null and 
  Rear = Null Else If Front = 
  n Then Set Front = 1 
  Else 
   Set Front = 
  Front + 1 [End IF) 
 Step 4: Exit 
 
 
Q.3(d) Write an algorithm to convert infix expression to postfix expression. [5]
Ans.: Step 1 : Push a left parenthesis (onto the stack. 
 Step 2 : Append a right parenthesis) at the end of the given expression I. 
 Step 3 : Repeat Steps from 4 to 8 by scanning I character by character from left to right 

until the stack is empty. 
 Step 4 : If the current character in I is a white space, simply ignore it. 
 Step 5 : If the current character in I is an operand, write it as the next element of the 

postfix expression P. 
 Step 6 : If the current character in I is a left parenthesis (, push it onto the stack. 
 Step 7 : If the current character in I is an operator Then 



Prelim Question Paper Solution 

- 11 - 

   (a) Pop operators (if there is any) at the top of stack while they have equal or 
higher precedence than the current operator and put the popped operators in 
the postfix expression P. 

   (b) Push the currently scanned operator on the stack. 
 Step 8 :  If the current character in I is a right parenthesis Then 
   (a) Pop operator from the top of the stack and insert them in the postfix 

expression P until a left parenthesis is encountered at the top of the stack. 
   (b) Pop and discard left parenthesis (from the stack. 
   [End Loop] 
 Step 9 : Exit 
 

 Explanation 
 In the 1st step, a left brace is pushed into the stack so that stack is initially not empty and a 

corresponding matching right brace is placed at the end of the expression in step 2. In step 
3, the loop is repeated until the end of the expression which is indicated by Null value in the 
stack.  

 
Q.3(e) Convert following infix expression into prefix and postfix expressions. 

(i) a  b  (c  d)  (e ^ 3  f) + g / h 
(ii) (a  b x c ^ 2) + d  (c / d + e) 

[5]

Ans.:  (i) a  b (c  d)  (e^ 3  f) + 9 / h 
   Prefix : 
   a  b  (cd-)  (^ e3   f) + /gh 
   a  b  (cd-)  ( ^ e 3 f) + /gh 
   a   b –cd    ^ e 3 f + / gh 
   xab   cd  x ^ e 3 f + /gb 
    x  ab  cdx ^  e3f + /gh 
   + x  ab  cdx ^  e3f + /gh 

   Postfix : 
   a  b  (cd)  (e3 ^ x f) + gh/ 
   a  b  (cd)  (e3 ^ f x) + gh/ 
   abx  cd    e3 ^  fx + gh/  
   ab  cd - x   e3 ^ fx + gh/ 
   ab   cd  x e 3 ^ f x  gh /t 
 
 (ii) (a  b  c ^ 2) + d  ( c / d + e) 
   Prefix : 
   (a  b  ^ c2) + d  ( /cd + e) 
   (xab   ^ c2) + d  (+ / cde)   
   (xxab ^ c2) + d  (+ / cde)  
   + x x ab ^ c2d  + / cde 
   + xx ab ^ c2d + /cde   

   Postfix : 
   (axbxc2^) + d (cd/ +e) 
   (abxxc2^) + d(cd/ +e +) 
   (abxc2 ^ x) + d (cd/+e +) 
   ab x c2 ^ x d +  cd /e+ 
   ab x c2 ^ x d + cd /e+- 
 
 
 



Vidyalankar : S.Y. B.Sc. (IT)  DS 

- 12 - 

Q.3(f) What is recursion? Write and explain an algorithm to find factorial of number 
(Use recursion) 

[5]

Ans.: Recursion 
 Recursion is very important and powerful tool for developing algorithms for various problems. 

Recursion is the ability of a procedure either to call itself or calling to some other procedure 
which may result in call to the original procedure. In computer science, solution of many 
problems can be best defined recursively. Two very important conditions/requirements that 
must be satisfied by any procedure to be defined recursively are : 

  There must be a decision criterion that stops the further call to the procedure called 
base criteria. 

  Each time a procedure calls itself either directly or indirectly, it must be nearer to the 
solution i.e. nearer to base criteria. 

 A procedure having these two properties is called a well defined procedure and can be 
defined recursively. Recursive procedure can be implemented in various programming 
languages but compilers of some programming languages are not able to handle recursive 
procedures because they do not have stack mechanism required by the recursive 
procedures. Programming language such as PASCAL, ALGOL, C, and C++ can be used to 
implement recursive procedure calls. 

 

 Algorithm : Calculate the value of n! recursively.  
 Factorial(n) 
 If n = 0 Then 
  Set Fact = 1 
  Return 
 Else 
  Set Fact = n  Factorial(n − 1) 
  Return 
 [End  If] 
  
Q.4Attempt the following (any THREE) [15]
Q.4(a) Make a binary search tree by inserting the following numbers in sequence 

52  36  98  29  123  39  15  56  31  365  278  45  72 
[5]

Ans.: 1)       2)      3) 
 
 
 
 4)       5) 
 
 
 
 
 
 6)         7) 
 
 
 
 
 8)         9) 
 
 
 
 
 
 

36 

29 

98 

 52

39 123

36

29

98

 52

39 123

15

52 

36 

29 

98

52

36

29

98

123

52 52 

36 

52

36 98

52

29

98

39 56

 36

12329 39

 36

29 3915 31

52

29 

98 

39 56 

 36 

123 



Prelim Question Paper Solution 

- 13 - 

 
 10)           11) 
 
 
 
 
 
 
 12)           13) 
 
 
 
 
 
 
 
 
Q.4(b) Draw the binary tree whose inorder and preorder traversals are : 

Inorder  :  g  d  b  h  e  i  a  f  c 
Preorder : a  b  d  g  e  h  i  c  f  

[5]

Ans.: 1) 
 
 
 
 2)            3) 
 
 
 
 
 
 4) 
            5) 
 
 
 
 
 
 
Q.4(c) What is AVL tree? How balancing is done in AVL tree? Explain with example. [5]
Ans.: AVL tree is also called as height balanced tree. AVL tree is named after its discovers 

Adelson, Velskii and Landes. A binary tree is said to be height balanced tree if the nodes of 
the tree are organized in such a way that the difference in the heights of the left subtree 
and the right subtree of any node in the tree is less than or equal to one, if the difference 
in the heights becomes more than one then the tree is unbalanced. In height balanced trees 
additional field is associated with each node of the tree. This additional field stores the 
balance factor (bf) of the node. The balance factor (bf) of the node is the difference of 
the heights of its left subtree and right subtree. The structure of the node will be Left 
Info Bf Right. 

 
 The balance factor (bf) of the node in an AVL tree can be 1, 0 or 1 
   The bf of the node will be negative if the height of its left subtree is less than the 

height of its right subtree 
   The bf of the node will be zero if the height of its left subtree is equal to the height of 

its right subtree 

52

29

98

39 56

 36

12329 39

 36

29 3915 31 365

278

45 72

52

29 

98 

39 56 

 36 

123 29 39

 36 

29 39 15 31 365

278

45 

29 

98 

39 56 

 36 

123 29 39 

 36 

29 39 15 31 365

52

29

98

39 56

 36

12329 39

 36

29 3915 31 365

278

52

A 

 g d b h e i f  c 

a

d

C

g

e f

 b

h i

b 

 d  g h e i 

 a 

   fc 

a

d

g

  b    fc

e h i

a

 d 

 g 

 e

 b 

 h i 

   fc 



Vidyalankar : S.Y. B.Sc. (IT)  DS 

- 14 - 

   The bf of the node will be positive if the height of its left subtree is less than the 
height of its right subtree 

 Balancing in the AVL tree is done using rotations. To perform the rotation we mark a node 
which is the nearest ancestor to the newly inserted node whose balance factor has become 
other then 1, 0 or 1. This marked node is known as pivot node. 

  
 There are 4 types of rotations 
 LeftLeft Rotation  When the new node is to be inserted in the left subtree of the pivot 

node then leftleft rotation can be performed. 
 
Q.4 (d) Write an algorithm to sort elements in ascending order using insertion sort.

Explain with example. 
[5]

Ans.: Consider an unsorted array A of size 8 shown below : 
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] 
22 35 17 8 13 44 5 28 

 Initially, we consider that the whole list of elements is divided into two parts i.e. the sorted 
part consisting of the 1st element of the array and the unsorted part consisting of the 
remaining n − 1 elements. The division of the whole list in two parts is shown below. 

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] 
22 35 17 8 13 44 5 28 

 Now, starting from the first element of the unsorted part, we will insert elements are by 
one into the sorted part. Here, the first element A[2] = (= 35) of the unsorted part is 
compared with the element A[1] (= 22) in the sorted part of the list. As A[2] > A[1] the 
element A[2] will remain at its position as shown below : 

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] 
22 35 17 8 13 44 5 28 

 Now, the sorted part of the list has 2 elements and remaining 6 elements are present in the 
unsorted part of the list. 

  
 Now, comparing element A[3] (= 17), the first element of the unsorted part of the list, with 

the elements of the sorted part of the list i.e. A[2] (= 35) and A[1] (= 22), for element A[3] 
will be inserted at the 1st position of the list as shown below: 
 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] 

17 22 35 8 13 44 5 28 
 Now, the sorted part of the list has 3 elements and remaining 5 elements are present in the 

unsorted part of the list.  
 
 Now, it’s the turn for the element A[4] (= 8), which will be compared with the element in 

sorted part of the list until an element smaller than A[4] is found. As the element                   
A[3] (= 35), A[2] (= 22), and A[1] (= 17) are greater than A[4] (= 8), so elements A[3], A[2], 
and A[1] will be shifted one position towards right and the element A[4] will be inserted at 
position A[1] as shown below : 

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] 
8 17 22 35 13 44 5 28 

 Now, the sorted part of the list has  4 sorted elements and remaining 4 elements are 
present in the unsorted part of the list. 

 
 In the next step, the element A[5] = (= 13) will be inserted at position A[2] after shifting 

elements A[2], A[3] and A[4] one position towards right as shown in figure below : 
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] 

8 13 17 22 35 44 5 28 
 In the next step, element A[6] will remain at the same position because it is the largest 

element as compared to the elements in the sorted part of the list. 



Prelim Question Paper Solution 

- 15 - 

  
 Next, element A[7](= 5) will be inserted at position A[1] as shown below : 

  
 In the final step, the element A[8] (= 28) will be inserted at position A[6] and the resulting 

sorted list will be : 

  
 Thus, the given array has beed sorted. 
 
Q.4 (e) Sort the following data elements using heap sort algorithm.  

22, 35, 17, 8, 13, 44, 5, 28 
[5]

Ans.:  
22 35 17 8 13 44 5 28 

 First of all array will be converted into mac heap as shown below 
 

  
 

 
 

44 28 35 22 13 17 5 8 
  
 Step 1 : Delete the largest element 44 and place it at the last position in the array. Reheap 

the remaining elements in the first seven positions. After completion the array will be as 
shown below 

  

35 28 17 22 13 8 5 44 
 
 Step 2: In the second step 35 will be removed and the remaining 5=6 elements in the array 

will be reheaped in the first six positions and the deleted element will be placed at the 2nd 
last position of the array as shown below 

28 22 17 5 13 8 35 44 



Vidyalankar : S.Y. B.Sc. (IT)  DS 

- 16 - 

 Step 3 : In the third step 28 will be removed and the remaining elements in the array will 
be reheaped in the first six positions and the deleted element will be placed at the 3rd last 
position of the array as shown below 

 
22 13 17 5 8 28 35 44 

 
 Step 4 : In the fourth step 22 will be removed and the remaining elements in the array will 

be reheaped in the first six positions and the deleted element will be placed at the 4th last 
position of the array as shown below 

  
17 13 8 5 22 28 35 44 

 
 Step 5: In the fourth step 17 will be removed and the remaining elements in the array will 

be reheaped in the first six positions and the deleted element will be placed at the 5th last 
position of the array as shown below 

  
13 5 8 17 22 28 35 44 

  
 Step 6 : In the fourth step 13 will be removed and the remaining elements in the array will 

be reheaped in the first six positions and the deleted element will be placed at the 6th last 
position of the array as shown below 

  
8 5 13 17 22 28 35 44 

 Step 7 : In the fourth step 8 will be removed and the remaining elements in the array will 
be reheaped in the first six positions and the deleted element will be placed at the 6th last 
position of the array as shown below 

  
5 8 13 17 22 28 35 44 

 
Q.4(f) Sort the following elements using Merge Sort

23, 56, 13, 34, 78, 62, 98, 63, 49, 82 
[5]

Ans.:  
23  56  13  34  78 62 98 53 49 82 
23  56  13  34  78 62 98 53 49 82 
23  56  13  34  78 62 98 53 49 82 
23  56  13  34  78 62 98 53 49 82 
13  23  56  34  78 53 62 98 49 82 
13  23  34  56  78 49 53 62 82 98 
13  23  34  49  53 56 62 78 82 98 

 
Q.5Attempt the following (any THREE) [15]
Q.5(a) List different hashing methods. Explain with example any two of them. [5]
Ans.: Hashing is mainly a searching technique. However the main aim of hashing function is to map 

a relatively large domain of key values to a small range of addresses. Commonly used hashing 
methods are: 

  Mid Square Method     Division  Remainder Method  
  Folding Method      Shifting Method 
 

  Mid square Method: It is one of the most commonly used for address calculation. In 
this method the key value is squared and digits are taken from the middle of the square 
of the key value. The number of digits to be picked up from the middle of the square 
usually comes from the number of digits required for relative address range. The 
following table shows relative address for source key values.  



Prelim Question Paper Solution 

- 17 - 

Key Value Squared key value Relative Address 
5010 25100100 100  Collision 
5016 25160256 160  
5142 26440164 440  
5176 26790976 790  
5301 28100601 100  
5400 29160000 160 Collision 

 

 (ii) Division Remainder Method: The division remainder method of calculating addresses is 
one of the methods which comes first into existence. In this method for mapping key to 
address, the key is divided by a number which is approximately equal to the number of 
available addresses and the remainder generated is taken as relative address for the 
record. In this method, selection of approximate divisor is of great importance in 
distributing the keys to the address space evenly. Generally a prime number which is 
nearly equal to number of available addresses is taken as divisor. The following table 
shows the relative address for some key values.  

 

Key Value Remainder After Dividing the key 
By 997 (Relative Address) 

1098 101     Collision 
1120 123 
1185 188 
1230 233 
1410 413 
1866 869  
2095 101 
2117 123   Collision 

 
Q.5(b) Describe following collision resolution techniques.

(i) Linear probing       (ii) Chaining 
[5]

Ans.: Linear Probing: In Linear Probing, if a record with key K is mapped to an address which is 
already occupied by some other record then linear search starting from address generated by 
hash function is done until a free location is found for the storage of the new record. An 
empty location is always met if it is available. Linear probing algorithms are implemented in 
such a way that, starting from the address generated by the hash function, the status of 
each location is checked whether it is empty or not. Once an empty location is encountered, 
record is stored over there. On the other hand if the end of the address space is reached 
without meeting any free location then rather quitting, we starts looking for the empty 
location from the first address of the address space until a free location is encountered or 
location having address which was generated by the hash function is encountered again. In the 
later case the file is completely full and there is no space to accommodate the new record. 

  

 For using linear probing technique the hash function will be: 
 Here H(K) is the Hash function used to find the relative address before collision. 
 So, H(K) = K mod m p is the probe number which can be 0, 1, 2 m-1, and m is the size of the 

hash table. Consider the table of size 10. Suppose we want to insert some Chaining – One of 
the most efficient methods of handling colliding records is called synonym chaining. In this 
approach, colliding records. A separate one-way list is maintained for each set of records 
which are colliding to the same location. The records in these lists are not kept according to 
any specific order but whenever a new collision occurs, the colliding record is inserted at 
the front of the appropriate linked list. In this approach of handling collision, instead of 
storing records at locations in the address space, pointers are placed where each pointer 
points to the chain of records which shares the same hash location. 

 



Vidyalankar : S.Y. B.Sc. (IT)  DS 

- 18 - 

Q.5(c) Explain with example Prim’s algorithm to find the minimum spanning tree (MTS) [5]
Ans.: Prims algorithm starts by choosing an arbitrary vertex node of the graph. That arbitrary 

node is then considered as the root of the tree.  At each step a new node will be added to 
the tree. This algorithm stop when all the nodes from the graph are added to the tree. The 
nodes of the MST spans at the rate of one node at a time.  

 1. Let N be the set of selected nodes in the tree. Initially N = {} 
 2. Let M be the set of selected edges in the tree. Initially M = {} 
 3. Let S be the set of graph edges 
 4. Initialize N with initial vertex. (Starting Node).  
 5. Repeat while | N |  n 
 6. Let (u, v) be the least cost edge in S such that U  N and v not  N. 
 7. If there is no such edge. Then GoTo step 10 
 8. Add the node v to N 
 9. Add Edge (u, v) to M and set S = S{u, v}  
  [End loop] 
 10. If | N | = n Then 
  Print “M contains the edges of MST”  
  Exit 
  Else 
   Print “Graph is not connected “  
  [End If]  
 11. Exit  
 

 Consider the following graph on which we will apply Prim’s algorithm. 
 
 
 
 
 
 
 Set of selected nodes N2 = {} 
 Set of Selected edges M = {} 

 Set of Graph edges S =             
 3 2 1 6 61 23 32 10 4
ab,bc, cd, de, ef, fg, gh,ha,ac,bh, gd, df  

 Starting with node A we choose the least cost edge which start from node A and do not 
from a cycle. So  

  N = {P, H}  M = {Ah}   S =                    
63 2 10 21 6 3 2 4 3

AB,BC , CD,DE,EF, FG , GH,AC,BH, GD,DF  

 Now the least cost edge BC is chosen  
  N = {P, h, B}  M = {Ph, BH} 

  S =                  
63 10 21 6 3 2 4 3

AB, CD,DE ,EF, FG , GH,AC,BH, GD,DF  
 

 Now the least cost edge BC is chosen  
  N = {A, H, B, C}   M =  {AH, BH, BC} 

  S =                  
63 10 21 6 3 2 4 3

AB, CD,DE ,EF, FG , GH,AC,BH, GD,DF  
 

 Now the least cost edge CD is chosen.  
  M = {A, H, B, C, D} M = {AH, BH, BC, CD} 
  S =            

63 106 3 2 4 3
{AB, DE ,EF, FG , GH,AC, GD,DF}  

 

 Now the least cost edge DF is chosen  
  N = {A, H, B, C, D, F} 
  M = {AH, BH, BC, CD, DF}  
  S =          

66 3 23 4 10
{AB, DE ,EF, FG ,AC, GD} GH}  

A 

B 

H G F

D

E

C
3

1 

2

2 

6 

1

4 3

3

6

2



Prelim Question Paper Solution 

- 19 - 

 Now the least cost edge GF is CHOSEN  
  N = {A, H, B, C, D, F, G} 
  M = {AH, BH, BC, CD, DF, FG}  
  S =          

6106 33 4
{AB, DE , EF, GH,AC, GD}  

 Now, the least cost edge EF is chosen 
  N = {A, H, B, C, D, F, G, E}  
  M = {AH, BH, BC, CD, DF, EG, EF}  
  S =          

6106 33 4
{AB, DE , EF, GH,AC, GD}   

 The above,  
 
 
 
 
 
 
 
 The above is the resulting MST whose weight is 14. 
 
Q.5 (d) Explain Warshall’s algorithm of finding path matrix of graph. [5]
Ans.: Path matrix for a Graph: Consider a directed graph G of order n having set of vertices Vg 

and set of edges Eg. The path matrix P of the graph G will be a n x n matrix. The 
significance of finding the path matrix is that it shows the existence or absence of path 
between the pair of vertices. In the path matrix P for any graph G, if the entry 
corresponding to any pair of vertices is non-zero then it represents that there exist at 
Warshall's Algorithm: It is used to compute the existence of paths within a directed graph 
using Boolean operators and matrices. Create an adjacency matrix for the graph and then 
based on the adjacency matrix define n boolean matrices A1, A2, AJ, A" Let akij denotes 
(i, j) th entry of matrix Ak then aki.j is 1 if there exist a simple path from vi to vj which 
does not use any other vertex as intermediate point and 0 if there is no 

 
Q.5(e) List graph traversal techniques. Write and explain algorithm for any one. Give 

suitable example. 
[5]

Ans.: Path matrix for a Graph: Consider a directed graph G of order n having set of vertices Vg 
and set of edges. Eg. The path matrix P of the graph G will be a n x n matrix. The 
significance of finding the path matrix is that it shows the existence or absence of path 
between the pair of vertices. In the path matrix P for any graph G, if the entry 
corresponding to any pair of vertices is non-zero then it represents that there exist at 
Warshall's Algorithm: It is used to compute the existence of paths within a directed graph 
using Boolean operators and matrices. Create an adjacency matrix for the graph and then 
based on the adjacency matrix define n boolean matrices A1, A2, AJ, A"  
Let akij denotes (i,j)th entry of matrix Ak then aki.j is 1 if there exist a simple path from vi 
to vj which does not use any other vertex as intermediate point and 0 if there is no  
    Set P[i][j] = A[i][j] 
   [End Loop] 
  [End Loop] 
Step 3: Repeat Step 4 and 5 For k = 1 to n 
Step 4:   Repeat Step 5 For I = 1 to n 
Step 5:    Repeat For j = 1 to n 
      Set P[i][j] OR (P[i][k] And P[k][j]) 
     [End Loop] 
    [End Loop] 
Step 6: Exit 
 

B 

A 

H G F

E

DC 

2 

1 

2 1

3

3
2



Vidyalankar : S.Y. B.Sc. (IT)  DS 

- 20 - 

Q.5(f) Explain with example Dijkstra’s shortest path algorithm. [5]
Ans.: Dijkstra’s algorithm is an application of finding the shortest path from 

source vertex to all other vertices. This type of shortest path is known 
as single source shortest path. It is a greedy algorithm whose essential 
feature is the order in which the paths are determined. It starts by 
initializing a vertex in the graph.  

 

 We give permanent label to A with Cost O and all other vertices are given temporary, labels 
with costs . 

 

 In the next step to select the least cost edge connecting a vertex with a permanent label to 
vertex with temporary label. 

 
  
 
 
 
 
 Now find the least cost edge from any of the permanent labels to a temporary label and 

then make that label permanent.  
 
 
 
 
 
 In the final step we select the least cost edge from any permanent labels to a temporary 

vertex.  
 
 
 
 
 
 
 1. S = {V0} 
 2. Repeat step for i =1 to n=1 to n  
   D[1]  =  C [V0, i] 
  [End loop] 
 3. Repeat step 4 to 6 for i = 1 to n1 
 4. Choose a node j in vs such that D[j] is minimum. 
 5. Add j to s 
 6. Repeat step for each vertex k in vs  
   D [k] = Min (D [k], D[j] + C[j, k]) 
  [End Loop] 
 7. Exit 

     

Value = 2 to = 2 

A 

B 

D 

C 

2 

3 6 

5 



 
0 



A

B

D

C

2

3 6

5




0

2

A 

B 

D 

C 

2 

3 6 

2

 0 

3 

5 

A

B 

D 
C 

2 

3 6

2 

0 

3 

5
Value = 5 + 2 = 7

A 

B 

D

C 

2 

3 6

5


